$\mathrm{Mn}-\mathrm{O}$ bond length in the present structure is 1.610 (6) \AA which is closer to the reported values for the potassium (Palenik, 1967) and caesium (Prout \& Nassimbeni, 1966) salts [1.607 (5) (without libration correction) and $1.63 \AA$, respectively].

We acknowledge support of this work by the Korea Research Foundation (Non-directed Research Fund, 1989) and by the Research Institute of Industrial Science and Technology ($0026 R$, 1990).

References

Enraf-Nonius (1982). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Karaman, H., Barton, R. J., Robertson, B. E. \& Lee, D. G. (1984). J. Org. Chem. 49, 4509-4516.

Palenik, G. (1967). Inorg. Chem. 6, 503-507.
Prout, E. G. \& Nassimbeni, L. R. (1966). Nature (London), 211, 70-71.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 2674-2676

Structure of 3-Methyl-3,4-dihydro-1H-2,3-benzothiazine 2,2-Dioxide

By Blas E. Rivero* and Mario A. Bianchet \dagger
Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, CC 67 (1900) La Plata, Argentina

and Rodolfo D. Bravo \ddagger
Departamento de Ciencias Básicas, Universidad Nacional de Lujan, rutas 5 y 7, (6700) Lujan, Argentina
(Received 15 October 1990; accepted 25 June 1991)

Abstract

C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}, M_{r}=197 \cdot 26\), triclinic, $P \overline{1}, a=$ 9.355 (4), $\quad b=10.001$ (3), $\quad c=10.787(5) \AA, \quad \alpha=$ 86.93 (3) $, \quad \beta=88.88(3), \quad \gamma=69.56(3)^{\circ}, \quad V=$ 944 (1) $\AA^{3}, Z=4, D_{x}=1.387 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=$ $0.71073 \AA, \quad \mu=0.294 \mathrm{~mm}^{-1}, \quad F(000)=416, \quad T=$ $293 \mathrm{~K}, R=0.045$ for 2057 observed reflections. There are two crystallographically independent molecules per asymmetric unit and the heterocyclic ring in both takes a twisted half-chair conformation. The S atoms are tetrahedrally coordinated with a dihedral angle between the $\mathrm{C}-\mathrm{S}-\mathrm{N}$ and $\mathrm{O}-\mathrm{S}-\mathrm{O}$ planes of $89.51(14)^{\circ}$. The methyl groups are almost axial with torsional angles $\mathrm{C}(1 A, B)-\mathrm{S}(2 A, B)-$ $\mathrm{N}(3 A, B)-\mathrm{C}(11 A, B)$ of 70.73 (31) and $74.52(35)^{\circ}$, respectively.

Experimental. The synthesis of the title compound has been reported previously (Orazi, Corral \& Bravo, 1986). Crystals obtained by slow cooling (330300 K) of a solution in ethanol. The crystal used for

[^0]data collection had dimensions $0.1 \times 0.3 \times 0.5 \mathrm{~mm}$. Intensities measured with a Nonius CAD-4 diffractometer; $\omega-2 \theta$ scanning mode, with scan width (0.80 $+0.35 \tan \theta)^{\circ}$ and scan speed of $2.50-6.67^{\circ} \mathrm{min}^{-1}$; graphite-monochromated Mo $K \alpha$ radiation. Unitcell parameters determined from least squares on setting angles of 24 reflections with $8.5<2 \theta<19^{\circ}$; range of $h k l$: $-1<h<11,-10<k<11,-12<l<$ $12, \theta_{\max }=25^{\circ}$. One standard reflection ($\overline{1} 07$) varied $\pm 2 \cdot 1 \%$ of mean intensity over data collection; 3965 reflections measured, 2945 unique, $R_{\text {int }}=0.018,2057$ considered observed on the criterion $I>3 \sigma(I)$; Lorentz-polarization and geometrical absorption corrections were applied (average transmission factor 0.95 , with maximum 0.97 and minimum 0.92 for 120 and $\overline{1}, 0,12$ reflections, respectively). Structure solved by centrosymmetric direct methods and refined by least squares. After a full-matrix least-squares refinement, with all non-H atoms anisotropic, the H atoms in the heterocyclic ring and the benzene ring were included at positions based on those found in a difference synthesis; refined in the final run with two common isotropic thermal parameters for CH_{2} and fused-benzene H atoms. The methyl-group H atoms in both molecules were geometrically placed ($\mathrm{C}-\mathrm{H}$ $1.08 \AA$); the methyl group was treated as a rigid group with a common isotropic factor for its H atoms. Function minimized $\sum\left[w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right]$ with

Table 1. Fractional positional parameters and equivalent isotropic thermal parameters (\AA^{2}) for non- H

	atoms with e.s.d.'s in parentheses			
	$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} B_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ (Hamilton, 1959).			
	x	y	z	$B_{\text {cq }}$
$\mathrm{C}(1 A)$	0.1863 (4)	0.1926 (4)	0.2458 (3)	3.8 (2)
S(2A)	0.05912 (10)	$0 \cdot 2164$ (1)	$0 \cdot 1216$ (1)	3.79 (4)
$\mathrm{O}(1 / 4)$	-0.0180 (3)	0.1160 (3)	0.1350 (3)	$5 \cdot 8$ (2)
$\mathrm{O}(2 A)$	-0.0290 (3)	0.3654 (3)	$0 \cdot 1066$ (2)	$5 \cdot 0$ (1)
$\mathrm{N}(3 A)$	0.1723 (3)	0.1747 (3)	0.0015 (3)	$3 \cdot 8$ (1)
$\mathrm{C}(4 A)$	0.2596 (5)	0.2721 (4)	-0.0169 (4)	4.3 (2)
$\mathrm{C}(5 A)$	0.4780 (5)	0.3221 (4)	$0 \cdot 0756$ (5)	$5 \cdot 2$ (2)
$\mathrm{C}(6 A)$	0.5624 (6)	0.3375 (5)	$0 \cdot 1732$ (6)	6.5 (3)
$\mathrm{C}(7 A)$	0.5207 (6)	0.3117 (5)	0.2931 (6)	$6 \cdot 2$ (3)
$\mathrm{C}(8 A)$	$0 \cdot 3973$ (5)	$0 \cdot 2689$ (4)	0.3147 (4)	4.9 (2)
$\mathrm{C}(9 A)$	0.3131 (4)	0.2499 (3)	0.2156 (3)	$3 \cdot 4$ (1)
$\mathrm{C}(10 \mathrm{~A})$	$0 \cdot 3526$ (4)	$0 \cdot 2792$ (3)	0.0934 (3)	$3 \cdot 6$ (2)
$\mathrm{C}(11 A)$	$0 \cdot 2651$ (5)	0.0224 (4)	-0.0064 (4)	4.9 (2)
$\mathrm{C}(18)$	-0.0867 (4)	0.9028 (4)	0.3586 (4)	4.1 (2)
S(2B)	0.0952 (1)	0.79309 (9)	0.41000 (9)	3.86 (4)
$\mathrm{O}(1 B)$	$0 \cdot 2000$ (3)	0.8674 (3)	$0 \cdot 3884$ (3)	$5 \cdot 8$ (2)
$\mathrm{O}(2 B)$	0.0819 (3)	0.7381 (3)	0.5326 (2)	$5 \cdot 2$ (1)
$\mathrm{N}(3 B)$	0.1375 (3)	0.6607 (3)	$0 \cdot 3190$ (3)	$3 \cdot 8$ (1)
$\mathrm{C}(4 B)$	0.0305 (4)	0.5820 (4)	$0 \cdot 3335$ (4)	4.4 (2)
$\mathrm{C}(5 B)$	-0.2425 (5)	0.6016 (4)	$0 \cdot 3338$ (4)	4.4 (2)
$\mathrm{C}(6 B)$	-0.3972 (5)	0.6755 (5)	$0 \cdot 3401$ (4)	$5 \cdot 0$ (2)
$\mathrm{C}(7 B)$	-0.4491 (5)	0.8200 (5)	$0 \cdot 3497$ (4)	$5 \cdot 2$ (2)
$\mathrm{C}(8 \mathrm{~B})$	-0.3469 (4)	0.8904 (4)	0.3564 (4)	4.3 (2)
$\mathrm{C}(9 B)$	-0.1909 (4)	0.8184 (3)	$0 \cdot 3504$ (3)	$3 \cdot 1$ (1)
$\mathrm{C}(10 \mathrm{~B})$	-0.1376 (4)	0.6709 (3)	0.3378 (3)	$3 \cdot 2$ (1)
$\mathrm{C}(11 B)$	$0 \cdot 1794$ (6)	$0 \cdot 6875$ (5)	0.1909 (4)	5.9 (2)

$w=\left[\sigma^{2}\left(F_{o}\right)+0.002 F_{o}^{2}\right]^{-1}$, for a total of 293 parameters refined. Refinement converged to a final $R=$ 0.045 and $w R=0.048$; inspection of F_{c} and F_{o} values indicated a correction for secondary extinction was necessary, $\quad F_{\text {corr }}=F_{c} /\left|1 \cdot 0-10^{-4} \chi F_{c}^{2} / \sin \theta\right|, \quad \chi=$ 0.0199 in the final run. Final $\Delta / \sigma=0.03, \Delta \rho_{\text {min }}=$ -0.28 and $\Delta \rho_{\text {max }}=0.22 \mathrm{e} \AA^{-3}$ on final difference map. Atomic scattering factors for non-H atoms from Cromer \& Mann (1968) with corrections for anomalous dispersion from Cromer \& Liberman (1970); for H from Stewart, Davidson \& Simpson (1965). Most of the calculations were performed on a MicroVAX II computer (Departamento de Física de la Universidad Nacional de La Plata). Programs used: SHELX76 (Sheldrick, 1976), SHELXS86 (Sheldrick, 1985) and ORTEP (Johnson, 1965). Fractional atomic parameters and equivalent isotropic thermal parameters for the non-H atoms are given in Table 1.* The atom-numbering scheme is shown in Fig. 1. Table 2 gives bond lengths and angles within the molecule.

Related literature. The average $\mathrm{S}-\mathrm{C}\left(s p^{3}\right)$ and $\mathrm{S}-$ $\mathrm{N}\left(s p^{2}\right)$ bond distances are $1.757(7)$ and 1.634 (6) \AA respectively. The $\mathrm{S}-\mathrm{N}$ and $\mathrm{S}-\mathrm{C}$ distances and geometry are in reasonable agreement with those

[^1]Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C}(1 A)-\mathrm{S}(2 A)$	1.761 (4)	$\mathrm{C}(1 B)-\mathrm{S}(2 B) \quad 1$	1.753 (3)
$\mathrm{C}(1 A)-\mathrm{C}(9 A)$	1.510 (6)	$\mathrm{C}(1 B)-\mathrm{C}(9 B) \quad 1$	1.502 (7)
$\mathrm{S}(2 A)-\mathrm{O}(1 A)$	1.427 (4)	$\mathrm{S}(2 B)-\mathrm{O}(1 B) \quad 1$	1.431 (4)
$\mathrm{S}(2 A)-\mathrm{O}(2 A)$	1.431 (3)	$\mathrm{S}(2 B)-\mathrm{O}(2 B) \quad 1$	1.425 (3)
$\mathrm{S}(2 A)-\mathrm{N}(3 A)$	1.634 (3)	$\mathrm{S}(2 B)-\mathrm{N}(3 B) \quad 1$	1.622 (3)
$\mathrm{N}(3 A)-\mathrm{C}(4 A)$	1.478 (7)	$\mathrm{N}(3 B)-\mathrm{C}(4 B) \quad 1$	1.475 (6)
$\mathrm{N}(3 A)-\mathrm{C}(11 A)$	1.473 (4)	$\mathrm{N}(3 B)-\mathrm{C}(11 B) \quad 1$	1.465 (6)
$\mathrm{C}(4 A)-\mathrm{C}(10 A)$	1.507 (6)	$\mathrm{C}(4 B)-\mathrm{C}(10 B) \quad 1$	1.514 (5)
$\mathrm{C}(10 A)-\mathrm{C}(5 A)$	$1 \cdot 390$ (6)	$\mathrm{C}(10 B)-\mathrm{C}(5 B) \quad 1$	$1 \cdot 388$ (6)
$\mathrm{C}(5 A)-\mathrm{C}(6 A)$	1.375 (8)	$\mathrm{C}(5 B)-\mathrm{C}(6 B) \quad 1$	$1 \cdot 378$ (6)
$\mathrm{C}(6 A)-\mathrm{C}(7 A)$	1.381 (9)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 B) \quad 1$	1.363 (7)
$\mathrm{C}(7 A)-\mathrm{C}(8 A)$	1.376 (8)	$\mathrm{C}(7 B)-\mathrm{C}(8 B) \quad 1$	1.376 (6)
$\mathrm{C}(8 A)-\mathrm{C}(9 A)$	1.399 (6)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 B) \quad 1$	1.386 (5)
$\mathrm{C}(9 A)-\mathrm{C}(10 A)$	1.405 (5)	$\mathrm{C}(9 B)-\mathrm{C}(10 B) \quad 1$	$1 \cdot 396$ (5)
$\mathrm{S}(2 A)-\mathrm{C}(1 A)-\mathrm{C}(9 A)$	113.2 (2)	$\mathrm{S}(2 B)-\mathrm{C}(1 B)-\mathrm{C}(9 B)$	111.0 (2)
$\mathrm{C}(1 A)-\mathrm{C}(9 A)-\mathrm{C}(10 A)$) 122.9 (3)	$\mathrm{C}(1 B)-\mathrm{C}(9 B)-\mathrm{C}(10 B)$	123.0 (4)
$\mathrm{O}(1 A)-\mathrm{S}(2 A)-\mathrm{O}(2 A)$	119.0 (2)	$\mathrm{O}(1 B)-\mathrm{S}(2 B)-\mathrm{O}(2 B)$	118.5 (2)
$\mathrm{O}(1 A)-\mathrm{S}(2 A)-\mathrm{C}(1 A)$	$110 \cdot 3$ (2)	$\mathrm{O}(1 B)-\mathrm{S}(2 B)-\mathrm{C}(1 B)$	109.3 (2)
$\mathrm{O}(1 A)-\mathrm{S}(2 A)-\mathrm{N}(3 A)$	$107 \cdot 8$ (2)	$\mathrm{O}(1 B)-\mathrm{S}(2 B)-\mathrm{N}(3 B)$	$109 \cdot 1$ (2)
$\mathrm{O}(2 A)-\mathrm{S}(2 A)-\mathrm{C}(1 A)$	$108 \cdot 1$ (2)	$\mathrm{O}(2 B)-\mathrm{S}(2 B)-\mathrm{C}(1 B)$	108.5 (2)
$\mathrm{O}(2 A)-\mathrm{S}(2 A)-\mathrm{N}(3 A)$	$107 \cdot 3$ (2)	$\mathrm{O}(2 B)-\mathrm{S}(2 B)-\mathrm{N}(3 B)$	107.4 (2)
$\mathrm{S}(2 A)-\mathrm{N}(3 A)-\mathrm{C}(4 A)$	111.2 (3)	$\mathrm{S}(2 B)-\mathrm{N}(3 B)-\mathrm{C}(4 B)$	112.0 (2)
$\mathrm{S}(2 A)-\mathrm{N}(3 A)-\mathrm{C}(11 A)$) $116 \cdot 1$ (3)	$\mathrm{S}(2 B)-\mathrm{N}(3 B)-\mathrm{C}(11 B)$	117.0 (3)
$\mathrm{C}(8 A)-\mathrm{C}(9 A)-\mathrm{C}(1 A)$	117.6 (3)	$\mathrm{C}(8 B)-\mathrm{C}(9 B)-\mathrm{C}(1 B)$	118.4 (3)
$\mathrm{C}(10 A)-\mathrm{C}(9 A)-\mathrm{C}(8 A)$) 119.4 (4)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(9 B)-\mathrm{C}(8 B)$) 118.7 (4)
$\mathrm{C}(10 A)-\mathrm{C}(5 A)-\mathrm{C}(6 A)$) $122 \cdot 2(5)$	$\mathrm{C}(10 B)-\mathrm{C}(5 B)-\mathrm{C}(6 B)$) 121.5 (4)
$\mathrm{N}(3 A)-\mathrm{S}(2 A)-\mathrm{C}(1 A)$	$103 \cdot 1$ (2)	$\mathrm{N}(3 B)-\mathrm{S}(2 B)-\mathrm{C}(1 B)$	102.9 (2)
$\mathrm{N}(3 A)-\mathrm{C}(4 A)-\mathrm{C}(10 A)$) 114.9 (3)	$\mathrm{N}(3 B)-\mathrm{C}(4 B)-\mathrm{C}(10 B)$) 116.7 (3)
$\mathrm{C}(4 A)-\mathrm{N}(3 A)-\mathrm{C}(11 A)$) 114.1 (3)	$\mathrm{C}(4 B)-\mathrm{N}(3 B)-\mathrm{C}(11 B)$) 115.5 (4)
$\mathrm{C}(4 A)-\mathrm{C}(10 A)-\mathrm{C}(9 A)$) 122.2 (4)	$\mathrm{C}(4 B)-\mathrm{C}(10 B)-\mathrm{C}(9 B)$) 122.7 (4)
$\mathrm{C}(4 A)-\mathrm{C}(10 A)-\mathrm{C}(5 A)$) 119.6 (4)	$\mathrm{C}(4 B)-\mathrm{C}(10 B)-\mathrm{C}(5 B)$) 118.4 (3)
$\mathrm{C}(5 A)-\mathrm{C}(6 A)-\mathrm{C}(7 A)$	119.3 (6)	$\mathrm{C}(7 B)-\mathrm{C}(6 B)-\mathrm{C}(5 B)$	119.6 (5)
$\mathrm{C}(5 A)-\mathrm{C}(10 A)-\mathrm{C}(9 A)$) 118.2 (4)	$\mathrm{C}(9 B)-\mathrm{C}(10 B)-\mathrm{C}(5 B)$) 118.8 (3)
$\mathrm{C}(6 A)-\mathrm{C}(7 A)-\mathrm{C}(8 A)$	120.4 (6)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	119.9 (4)
$\mathrm{C}(7 A)-\mathrm{C}(8 A)-\mathrm{C}(9 A)$	$120 \cdot 5$ (4)	$\mathrm{C}(9 B)-\mathrm{C}(8 B)-\mathrm{C}(7 B)$	121.6 (4)

Fig. 1. Perspective drawing of the title compound indicating atom labeling. Thermal ellipsoids are drawn at the 50% probability level.
reported for related compounds: β-sulfanilamide (O'Connell \& Maslen, 1967); thiazine ring without fused benzene, sulthiame (Aupers, Carlisle \& Lindley, 1974; Camerman \& Camerman, 1975); and 1,2benzothiazines (Kojić-Prodić \& Ružić-Toroš, 1982; Golič \& Leban, 1987). The bond lengths and angles of the title compound are in good agreement with those of other 2,3-benzothiazines; the $\mathrm{S}-\mathrm{N}$ bond distance is slightly larger ($\sim 1.5 \%$) than the $\mathrm{S}-\mathrm{N}$ distance [1.603 (4) \AA] reported for 3,4-dihydro-1 H -2,3-benzothiazine 2,2 -dioxide (Rivero, Bianchet \& Bravo, 1991).

This work has received partial support from CONICET and CICPBA, Argentina, and from CNPq, Brazil, through a CONICET-CNPq exchange program. The use of the National Cancer Institute, Frederick Cancer Research Facility, Advanced Scientific Computing Laboratory (ASCL) facilities for the Cambridge Structural Database search is gratefully acknowledged.

References

Aupers, J., Carlisle, C. H. \& Lindley, P. F. (1974). Acta Cryst. B30, 1228-1233.
Camerman, N. \& Camerman, A. (1975). Can. J. Chem. 53, 2194-2198.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Golict, L. \& Leban, I. (1987). Acta Cryst. C43, 280-282.
Hamilon, W. C. (1959). Acta Cryst. 12, 609-610.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kojíć-Prodić, B. \& Ružic-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.
O'Connell, A. M. \& Maslen, E. N. (1967). Acta Cryst. 22, 134-145.
Orazi, O. O., Corral, R. A. \& Bravo, R. D. (1986). J. Heterocycl. Chem. 23, 1701-1708.
Rivero, B. E., Bianchet, M. A. \& Bravo, R. D. (1991). Acta Cryst. C47, 2501-2503.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structure of 6,13-Bis(butylthio)-5,12-dioxa-6,13-dithioxo-6a,7,13a,14-tetraaza-6,13-diphosphadibenz $[a, h]$ anthracene

By Jin-Ling Wang,* Ming Sun and Fang Ming Miao
Department of Chemistry, Tianjin Normal University, Tianjin, People's Republic of China
and Qi-Jie Chen and Shu-Juan Jin
Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China

(Received 16 April 1991; accepted 30 May 1991)

Abstract

C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}, M_{r}=568 \cdot 66\), monoclinic, $A 2 / a$ (non-standard setting), $a=14 \cdot 941$ (5), $b=$ 7.050 (1) , $\quad c=24.832$ (4) $\AA, \quad \beta=90.48$ (2) ${ }^{\circ}, \quad V=$ 2616 (2) $\AA^{3}, Z=4, D_{x}=1.444 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \quad \mu=4.963 \mathrm{~cm}^{-1}, \quad F(000)=1184$, room temperature, $R=0.039, \quad w R=0.044$ for 1017 observed reflections with $I>3 \sigma(I)$. The molecule is centrosymmetric. The six-membered oxazaphosphorinan ring has a chair conformation, the $\mathrm{P}=\mathrm{S}$ double bond is equatorial and the $\mathrm{P}-\mathrm{S}$ single bond is axial. The dihedral angle between the oxazaphosphorinan ring and the phenyl ring is 15.0°.

Experimental. The title compound was synthesized as indicated in Related literature. Crystals were obtained by slow evaporation from a trichloromethane solution. A crystal with dimensions $0.2 \times$ $0.2 \times 0.3 \mathrm{~mm}$ was mounted on a glass fibre. Accurate cell parameters were obtained from centred setting angles of 25 reflections in the range $10<\theta<19^{\circ}$. An

[^2]0108-2701/91/122676-02\$03.00

Enraf-Nonius CAD-4 diffractometer with graphitemonochromated Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$) was used. Space group $A 2 / a$ with the b axis unique is a non-standard setting with equivalent positions $\left[\left(0,0,0 ; 0, \frac{1}{2}, \frac{1}{2}\right)+\left(x, y, z ;-x,-y,-z ; \frac{1}{2}-x, y,-z ;\right.\right.$ $\left.\left.\frac{1}{2}+x, y,-z\right)\right]$. Diffraction intensities in the range $2<\theta<25^{\circ}$ were measured using the $\omega-2 \theta$ scan mode, index range $h:-16 \rightarrow 16, k: 0 \rightarrow 8, l: 0 \rightarrow 26$. Deviations of three standard reflections, measured after each group of 200 reflections, was less than $3 \cdot 1 \%$. 2304 unique reflections were collected, of which 1017 were considered observed with $I>3 \sigma(I)$. The intensities were corrected for Lorentz, polarization and absorption effects (with transmission coefficients in the range $0.82-0.97$). The structure was solved by direct methods (MULTAN78; Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and the positions of all the H atoms were found in a $\Delta \rho$ map at $R=0.064$. The structure was refined by full-matrix least-squares calculations on F, using unit weights, anisotropic temperature factors for non-H atoms and isotropic temperature factors

[^0]: * Member of Carrera del Investigador Cientifico, CICPBA, Argentina.
 \dagger Present address: Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205, USA.
 \ddagger Present address: Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, (1900) La Plata, Argentina.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, bond distances and angles involving H atoms, least-squares-planes data, and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54383 (24 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom all correspondence should be addressed.

